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Höfundar skýrslunnar bera ábyrgð á innihaldi hennar. Niðurstöður hennar ber ekki að túlka sem 
yfirlýsta stefnu Vegagerðarinnar eða álit þeirra stofnana eða fyrirtækja sem höfundar starfa hjá. 
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1 Introduction 
In Iceland, periods of extreme rainfall have led to numerous damaging floods, including 
widespread flooding in southeast Iceland in September 2017, as well as recent rainfall-induced 
landslides in Seyðisfjörður in December 2020, and 50-year flooding in the north of the country 
in June 2021. The landslides in Seyðisfjörður were caused by record-breaking rainfall, 
amounting to almost 570 mm over five days. Extreme flood estimates are important in the design 
of hydrological infrastructure, including highways, stormwater drains, bridges, and culverts. 

A recently published Icelandic study by Massad et al. (2020) reassessed precipitation return 
levels in Iceland, resulting in a new national map of 24-hour precipitation thresholds for a 5-
year event. The study also presented intensity-duration-frequency curves for numerous locations 
in Iceland, describing the relationship between rainfall intensity, rainfall duration, and return 
periods. 

The 2020 study was based on hourly precipitation data made recently available by the Icelandic 
reanalysis of atmospheric conditions, known as the ICRA dataset (Nawri et al., 2017). The 
ICRA dataset was derived from the HARMONIE numerical weather prediction model, 
providing access to various atmospheric parameters from over 11,000 grid-points at 2.5 km 
horizontal resolution. The dataset begins in 1979, providing over 38 years of hourly data. 

In this project, the runoff parameter from the ICRA dataset is investigated using the same 
extreme-value approach by Massad et al. (2020) and Þórarinsdóttir et al. (2021). Comprising 
liquid precipitation and snowmelt, the runoff parameter represents a new means for design-flood 
estimates at any non-glaciated location in Iceland. In the future, this dataset will allow flood 
return-periods to be estimated for ungauged catchments, enabling small-scale engineering 
assessments of runoff extremes at virtually any location.  

Extreme runoff estimates from ungauged catchments are challenging. In fact, such estimates 
represent one of the leading problems in flood hydrology. In several recent studies, Veðurstofan 
has investigated flood forecasting in ungauged catchments, including simulations using the 
WaSIM hydrological model in the Westfjords and Tröllaskagi regions (Crochet and 
Þórarinsdóttir, 2014). An index-flood method was also tested in the Eastfjords, leading to 
promising initial results (Crochet and Þórarinsdóttir, 2015). With the increasing dependence on 
Iceland’s road infrastructure, combined with the uncertainties of rapid climate change, there is 
a need to develop updated design-flood methods for rapid and widespread assessments. This 
project is a first step towards delivering such a methodology. 

Building on previously funded Vegagerðin research projects, the goal of this study is to 
investigate how reliable the ICRA runoff is to estimate flood extremes. The project will follow 
several steps: 

1. Firstly, daily runoff from the ICRA will be extracted for 44 catchments where discharge 
measurements have been recorded for more than 20 years.  

2. In a second step, two hierarchical clustering will be presented: one based on the ICRA 
discharge, the other on measurements with the aim of determining which rivers cluster 
similarly in both analyses. These rivers will constitute a group of control stations.  

3. Flood extremes will then be calculated based on both datasets using the Block Maxima 
method, and a cluster-based correction will be proposed to improve the extreme values 
results from the simulated discharge.  

4. Finally, these corrections will be applied to the other catchments, based on the clustering 
results from the simulation, as would be for ungauged rivers. Values will then be 
validated by the observations, offering a step towards the estimation of flood extremes 
in ungauged areas. 
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2 Data  

2.1 Measurements from the gauging station network  
Since the first gauging stations were set up in Iceland, the gauging network has expanded to 
record most of the major rivers in the country, allowing for high resolution measurements down 
to 10-minute intervals. River discharge is not measured directly: the gauges measure the water 
level, which is then converted into a discharge using flow rating curves. The rating curves are 
measured at the gauge location through cross-section of the river and establish the 
correspondence between water level and discharge. The rating curves are updated regularly, as 
river path and characteristics change over time. 

For this study, daily-averaged discharge measurements from a total of 44 gauging stations are 
used (Figure 1). Those stations were previously used for testing and calibrating the hydrologic 
model AirGR (Atlason et al., 2021) as well as for the analogue forecast set up for Vegagerðin 
(Priet-Mahéo et al., 2020 and 2021). On Figure 1, the gauging stations and their associated 
catchments are shown on a map of Iceland, with a colour code indicating their river type. 
According to that classification, four kinds of rivers exist in Iceland; although, in reality, they 
are often a combination of two or three different types. In the North, East and in the Westfjords, 
direct-runoff rivers (18 catchments, in green on the figure) lie on old, rather impermeable 
bedrock. On newer bedrock, spring-fed rivers (16 catchments, in blue on the figure) are 
dominant. Mostly fed by Vatnajökull, seven rivers are classified as glacial rivers (in grey). 
Finally, two catchments are primarily considered as lake rivers (in orange). Three gauging 
stations associated with the river Skaftá (VHM 70, VHM 183, and VHM 328) are qualified as 
jökulhlaup rivers, and are therefore particularly complicated to forecast because of the 
unpredictability of those events. They will be discarded later in this study. 

Table 1 enlists all the rivers used for this study, and indicates the beginning and end year of the 
observed timeseries along with the number of missing days. Note that most stations are still 
recording as of today, but only data until 2017 were needed for this study, to match the 
reanalysis. 

2.2 Simulated runoff from the Icelandic Reanalysis  

2.2.1 The Icelandic Reanalysis (ICRA), and extraction of the relevant 
variables  

The operational numerical weather prediction (NWP) system used by the Icelandic 
Meteorological Office (IMO) is the non-hydrostatic HARMONIE–AROME model, with a 
horizontal resolution of 2.5 × 2.5 km and 65 vertical levels (Bengtsson et al., 2017). The fine-
scale gridding gives 66,181 terrestrial points over Iceland. The model has been used to reanalyse 
atmospheric conditions in Iceland at hourly time-steps between September 1979 and August 
2017, resulting in the Icelandic Reanalysis (ICRA) dataset (Nawri et al., 2017). 

As in most NWP systems, runoff (ro) is not a direct output from the model, but it is a 
combination of three variables: the rainfall rate (rf), the rate of evaporation (evap) and the 
melting (mlt). Hourly runoff can therefore be calculated as: 

𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟 + 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

It should be noted that the melting variable is also an undirect product of the model resulting 
from the combination of sleet- and snowfall rates, sublimation, and snow water equivalent. 
Therefore, in total, six variables need to be extracted from the reanalysis in order to estimate the 
daily runoff. 
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Based on the 2.5 km horizontal resolution of the dataset, timeseries were extracted for the 
watersheds by summing the runoff from all grid-points within the catchment outlines. All those 
variables being cumulative, they were summed in order to have for each catchment one daily 
runoff timeseries covering nearly 40 years of reanalysis. 

2.2.2 Conversion of runoff into discharge  

To compare with the daily discharge timeseries from the gauges, the simulated daily runoff 
needs to be converted into a simulated discharge for each catchment. This is done with the 
following formula: 

𝑄𝑄(𝑚𝑚3𝑠𝑠−1) =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚𝑚𝑚) ∗ 0.001 ∗ 𝑐𝑐𝑒𝑒𝑚𝑚𝑚𝑚 𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒(𝑚𝑚2)

60 ∗ 60 ∗ 24  

The main assumption is that all the simulated runoff reaches the river within the day and no 
infiltration occurs. This approximation is not expected to work similarly in all the watersheds: 
it is assumed to give good results for small, direct-runoff catchments, but lead to larger errors 
for catchments with a strong groundwater component, or with water reservoirs such as lakes or 
meres.  

In this study, the focus is on extreme discharge values. Hence, even if a time lag exists between 
observed and simulated discharge (as a result from the fact that the runoff does not reach the 
river within the day), it is not expected to affect the flow analysis as the focus is on peak values, 
and not on the time of occurrence.  

Table 1 – Station list, timeseries available, a number of missing days among that period. 

River Time-period 
Missing 

days River Time-period 
Missing 

days 
10 - Svartá 1932 – 2017 

  

0 121 - Ormarsá 2005 – 2016 0 
12 - Haukadalsá 1950 – 2017 3165 128 - Norðurá 1970 – 2017 1360 
19 - Dynjandisá 1956 – 2017 789 144 - Austari-Jökulsá 1971 – 2017 0 
26 - Sandá 1965 – 2017 460 148 - Fossá 1968 – 2017  224 
30 - Þjórsá 1947 – 2017 2564 149 - Geithellnaá 1971 – 2017 5457 
38 - Þverá 1980 – 2017 0 150 - Djúpá 1968 – 2017 1 
43 - Brúará 1948 – 2017 0 162 - Jökulsá á Fjöllum 1984 – 2017 0 
45 - Vatnsdalsá 1948 – 2017 2088 183 - Skaftá 1980 – 2017 0 
48 - Selá 1982 – 2017 0 185 - Hólmsá 1980 – 2017 0 
51 - Hjaltadalsá 1980 – 2017 0 198 - Hvalá 1976 – 2017 1 
59 - Ytri-Rangá 1961 – 2015 0 200 - Fnjóská 1976 – 2017 0 
60 - Eystri-Rangá 2005 – 2017 0 204 - Vatnsdalsá 1976 – 2017 4261 
64 - Ölfusá 1980 – 2017 0 205 - Kelduá 1977 – 2017 2745 
66 - Hvítá 1980 – 2017 0 206 - Fellsá 1976 – 2017 2956 
68 - Tungufljót 1951 – 2017  2023 218 - Markarfljót 1982 – 2001 0 
70 - Skaftá 1951 – 2017   1755 233 - Kreppa 1985 – 2017 0 
81 - Úlfarsá 1956 – 2017  0 238 - Skjálfandafljót 1987 – 2017 0 
83 - Fjarðará 1958 – 2017  2558 271 - Sog 1972 – 2017 0 
92 - Bægisá 1980 – 2017  0 328 - Eldvatn 1993 – 2017 0 
102 - Jökulsá á Fjöllum 1980 – 2017  0 400 - Vattardalsá 1980 – 2017 0 
110 - Jökulsá á Dal 1963 – 2017  6194 408 - Sandá 1999 – 2017 0 
116 - Svartá 1985 – 2017 0 411 - Stóra-Laxá 2000 – 2017 0 
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Figure 1 – Location of the gauging stations used in this study, and outlines of the 
associated catchments. Colour of the catchment areas depends on the type of river: direct-
runoff (green), spring-fed rivers (blue), glacial rivers (grey), lake rivers (orange). Map 
from Atlason et al. (2021), based on the classifications of Rist (1990), Hróðmarsson et al. 
(2009, 2020), Hróðmarsson and Þórarinsdóttir (2018). 
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3 Cluster Analysis  

3.1 Methodology  
Over the years, several types of classifications have been developed with the aim of grouping 
rivers together according to their type. In 2014, rivers were classified based on the geology of 
the catchments and the presence of lakes and meres (Stefánsdóttir et al., 2014), while Rist 
(1990), and Hróðmarsson and Þórarinsdóttir (2018) based their classification on observations 
made over more than 50 years of field measurements. More recently, a hierarchical cluster 
analysis has been used to categorize rivers in groups that share more similarities than with any 
other rivers from other groups. This analytic method was previously used by Crochet (2012) 
and was adapted for Icelandic rivers in two previous Vegagerðin-funded projects (Priet-Mahéo 
et al., 2019 and 2021). According to Demirel and Kahya (2007), the Ward’s method based on 
Euclidean distances is better suited when performing a cluster analysis for hydrological data.  

In this research, the dataset used for clustering is comprised of both discharge timeseries and 
several independent catchment characteristics. Only values between 2007 and 2017 were used 
in order to work with a homogeneous set of data. Discharge data were then combined in three 
different ways, each method reflecting a different behaviour of the river:  

- Seasonality. Discharge is averaged over the whole timeseries by Julian day, 
emphasizing the seasonal pattern of each river. For each catchment, only monthly-
averaged discharge is kept so that only the general trend is kept in the analysis, as weekly 
variations are unrelated to the type of river and rather reflective of punctual weather 
conditions.  

- Flow-duration curves. Discharge is ranked decreasingly, and then plotted against 10% 
exceedance steps to create flow-duration curves. Those graphs express how often a 
discharge level is exceeded, providing a good indication of the river’s power potential. 

- Mass curves. Discharge is averaged over the whole timeseries by Julian day, and then 
summed cumulatively over day of year. Monthly differences are then computed between 
cumulated discharge and the values obtained if the discharge remained constant all year 
long.   

An example of each discharge plot is shown on Figure 2 for Dynjandisá catchment (VHM 19), 
in the Westfjords. On the top panel, the seasonality plot is shown based on daily-averaged values 
(grey line) and monthly-averaged values (black line). For the cluster analysis, as mentioned 
previously, only the monthly values were used. Contrarily to those figures, it should also be 
noted that discharge timeseries were normalised before being processed, in order to facilitate 
the comparison between rivers with very different baseflows.  

Additionally, several catchment characteristics (Table 2) were added to complete the analysis, 
including the area, aspect ratio, longest flow-path, mean elevation, and geological properties. 
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Figure 2 – Discharge timeseries for station VHM 19 as used in the cluster analysis: (a) 
seasonality plots, shown for both daily-averaged discharge (grey line), and monthly-
averaged discharge (black line). (b) flow-duration curve with 10% exceedance steps. (c) 
mass curve (black line) showing daily-averaged cumulated discharge over the year, with 
the identity line shown with the grey-dashed line. 
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Table 2 – Main characteristics of the river catchments used for the cluster analysis. 

VHM 

 

Area 

km2 

 

Aspect 
ratio 

 

 

Longest 
flowpath 
m a.s.l. 

Average 
Elevation 

m a.s.l. 
Glacial 

cover  % 

Old 
bedrock  

% 

Young 
bedrock 

% 
Bedrock 

% 

10 396.1 2.96 55,167 527 0 99.2 0.5 99.7 
12 164.7 1.74 31,960 408 0 96.8 0 96.8 
19 38.4 1.7 15,040 510 0 100 0 100 
26 266.3 3.36 64,555 387 0 61.3 38.7 100 
30 7313.5 2.57 247,279 702 13.22 15.5 66 81.5 
38 42.8 2.39 20,971 428 0 100 0 100 
43 640.7 1.73 50,958 307 0 3.1 96.9 99.9 
45 458.3 2.37 58,072 547 0 67.1 32.9 100 
48 701.4 1.74 74,306 543 0 48.9 51.1 100 
51 299.6 1.87 34,990 723 2.96 97 0 97 
59 621.9 2.9 84,104 354 0 0 98.6 98.7 
60 419.9 1.92 60,336 572 2.02 0 97.4 97.4 
64 5661.9 2.41 169,493 304 11.84 22 62.9 84.9 
66 1574.4 2.24 123,017 650 20.3 22.7 53.7 76.4 
68 201.1 1.33 35,345 245 0 6.2 93 99.2 
70 1409.1 3.93 129,717 771 30 2 68 70 
81 41.9 2.46 20,560 171 0 38.2 58.5 96.7 
83 47.5 1.1 11,878 683 0 100 0 100 
92 37.4 1.93 13,904 900 0 77.8 0 77.8 

102 5097.1 2.6 189,195 538 28.64 0 71.3 71.3 
110 3283 3.31 167,744 878 42.33 44.8 12.6 57.4 
116 527.1 1.87 62,858 645 0 1.2 98.8 100 
121 183.3 3.6 48,916 209 0 0 100 100 
128 513 2.01 58,289 338 0 93.7 1.7 95.4 
144 1085.2 1.69 93,866 960 12.88 55.9 28.7 84.6 
148 115.1 2.47 28,963 577 0 99.8 0 99.8 
149 189.4 3.27 37,033 609 4.83 91 0 91 
150 225.9 3.03 45,563 767 40.23 47 12.8 59.8 
162 2023.1 2.01 110,507 1,195 56.92 0 43.1 43.1 
183 1627.2 2.36 133,710 249 26.31 10.9 62.1 73 
185 216.8 1.42 31,153 294 0 0 100 100 
198 192.9 1.31 31,543 399 0 100 0 100 
200 1102.2 3.51 131,238 723 0 97.1 0.4 97.6 
204 102.3 2.47 28,106 466 0 100 0 100 
205 264.6 2.11 42,434 731 2 82 6 88 
206 126.3 2.29 28,303 865 0 100 0 100 
218 516.9 1.14 53,731 737 12.22 0 71.7 71.7 
233 818.1 3.42 81,106 1,130 37.65 0 62.3 62.3 
238 2163 1.54 118,032 822 4.51 26.5 68.7 95.2 
271 1027 2.64 97,404 394 3.35 5 83.3 88.3 
328 1496 2.99 146,594 155 28.62 5.8 64.7 70.6 
400 73.2 1.41 16,634 435 0 100 0 100 
408 581.3 1.13 58,363 756 49.27 0 50.7 50.7 
411 387.1 3.71 73,405 559 0 97.7 2.3 100 
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3.2 Results  
The cluster analysis was performed both based on measurements, and on simulated discharge 
in order to analyse the difference between clustering within both datasets. Results are presented 
on two dendrograms, shown on Figure 3. For both datasets, the cophenetic distances are close, 
with a value around 0.8. The cophenetic distance is an indicator of the correlation between 
distance and cophenetic matrices resulting from the cluster analysis. As it approaches the value 
of 1, it can be concluded that in the two analyses, data were clustered successfully. 

In the figure, it is decided to keep five clusters, and vertical bars are drawn on the dendrograms 
at a distance value of 2.8. The following stations belong to the same cluster in both analyses, 
and will be referred as control stations later on:  

- Cluster A: VHM 43, VHM 59, VHM 68, VHM 81, VHM 185, VHM 271 
- Cluster B: VHM 19, VHM 38, VHM 51, VHM 83, VHM 92, VHM 148, VHM 149, 

VHM 198, VHM 200, VHM 204, VHM 205, VHM 206, VHM 400 
- Cluster C: VHM 10, VHM 12, VHM 45, VHM 128, VHM 411 
- Cluster D: VHM 102, VHM 110, VHM 150, VHM 162, VHM 233, VHM 408, VHM 

183, VHM 70 
- Cluster E: VHM 48, VHM 116, VHM 121, VHM 238 

Overall, out of the 44 stations, 36 were clustered similarly in both analyses. Those catchments 
are shown on Figure 4, with a colour code for each cluster. In the rest of the study, three stations 
associated to river Skaftá are discarded because of the effects of jökulhlaup on the flood 
analysis: VHM 70 and VHM 183 (Cluster D in both analyses), and VHM 328 (Cluster A or 
Cluster D, depending on the cluster analysis). This leaves this study with 34 rivers used as 
control stations, and seven that will be studied later on. 

Results from the cluster analysis indicate that the control stations were generally classified 
according to river types, and weather conditions. Cluster A mostly gathers spring-fed rivers, 
some of them originating from glacial rivers and located on the southwestern part of Iceland. In 
Cluster B, most of the rivers are direct runoff, influenced by snowmelt, and located in the 
northern half of Iceland. Cluster C is more difficult to describe and quite mixed, with rivers 
located in the western part of the country, sometimes controlled by small ponds and lakes. 
Cluster D comprises glacial rivers, and all watersheds are partially covered by glaciers. Finally, 
in Cluster E, rivers are mainly groundwater-fed, which accounts for a large part of the baseflow. 

For further insights into the clustering process, normalised seasonality plots (similar to Figure 
2.a) are shown for each cluster, based on measured (Figure 5) and simulated (Figure 6) 
discharge. Within each cluster, mean monthly values are drawn with a solid line, and the 
minimum-maximum interval is shown with shaded area. For each cluster, the seasonality plots 
show very distinctive trends, indicating that river with the same behaviour were successfully 
clustered together by the analyses. For instance, in Cluster A, maximum discharge for all 
stations reaches its peak during the winter months, and a low point in August. The trend is 
completely different for Cluster D, with maximum discharge reached at the end of the summer. 
This is typical of glacial rivers: melting accumulates over the summer months and slowly 
increases the river flow. For Cluster C and D, the trends are similar in both analyses, with two 
peaks being reached: one in springtime and the other one in the fall. The general pattern for 
stations belonging to Cluster B differ between both analyses, which might be attributed to the 
fact that it is the largest cluster with 13 rivers. 
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Figure 3 – Dendrograms resulting from the cluster analysis on measured (left) and 
simulated (right) discharge timeseries. 
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 Figure 4 – Map of Iceland including catchments that clustered similarly after analysis 
on measured and simulated discharge.  
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Figure 5 – Seasonality plots for each cluster, based on discharge timeseries measurement. 
For each cluster, mean monthly values among all the stations belonging to the same 
cluster are shown with the solid lines, and the minimum-maximum intervals are shown 
with the shaded area. 
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Figure 6 – Seasonality plots for each cluster, based on discharge timeseries simulation 
from the ICRA dataset. For each cluster, mean monthly values among all the stations 
belonging to the same cluster are shown with the solid lines, and the minimum-maximum 
intervals are shown with the shaded area. 
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4  Extreme Value Analysis  

4.1 Methodology  
Extreme Value Analysis (EVA) is a statistical discipline used to predict the occurrence of rare 
events by assessing their frequency from the most extreme values of a dataset. EVA allows the 
calculation of return levels associated with periods that can be much longer than the length of 
the timeseries available for the analysis. Two approaches exist: the Peak-over-Threshold 
method and the Block Maxima method. In this study, only the latter method is used, as in recent 
hydrological projects at IMO (Pagneux et al., 2017, 2018 and 2019; Þórarinsdóttir et al., 2021).  

The Block Maxima approach consists of dividing the timeseries into non-overlapping periods 
of equal size and retaining only the maximum values within each period. When dealing with 
hydrological data, it is common to use the maximum daily values from each calendar year. A 
new timeseries that includes only the maxima is thus generated and referred to as an Annual 
Maxima Series (AMS). Under extreme value conditions, the AMS follows a General Extreme 
Value (GEV) family of distribution: 

𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒 ��1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇
𝜎𝜎 ��

−1 𝜉𝜉⁄
� 

where z is the extreme value and μ, σ and ξ are the three parameters of the GEV model G(z), 
defining location, scale and shape parameters, respectively. Three types of GEV distribution 
exist, depending on the value of the shape parameter ξ. In this study, for consistency with 
previous work for flood analysis, a GEV distribution of type I (Gumbel) is used to fit the AMS, 
with ξ set to zero: 

𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �− �
𝑧𝑧 − 𝜇𝜇
𝜎𝜎 ���,        

The return level r associated with the return period 1/p can finally be estimated with the formula: 

𝑟𝑟 = 𝜇𝜇 − 𝜎𝜎𝑚𝑚𝑟𝑟𝜎𝜎{−𝑚𝑚𝑟𝑟𝜎𝜎(1 − 𝑒𝑒)} 

and r is defined as the value expected to be exceeded on average once every 1/p year. 

For more details, see Coles (2001).  

4.2 Comparison between simulated and observed discharge 

4.2.1 Flow-duration curves 

In order to compare the discharge measured at the gauges with the discharge derived from the 
ICRA runoff, highest daily values are ranked and plotted decreasingly for each control station, 
using only values above the 95th percentile. For comparison purposes, the timeseries are 
identical for each station and days with no observations were also discarded in the reanalysis. 
Examples for each cluster are shown on Figure 7, on plots that look very similar to flow-duration 
curves, even though the x-axis is a number of days instead of a percentage exceedance. Only 
5% of the data are actually plotted since values below the 95th percentile are discarded in this 
comparison. Results show that the simulated discharge is much higher, although the general 
distribution of the flow-duration curves look very similar, as if the simulated discharge could 
easily be scaled by a correcting factor to match the observations. These results can be extended 
to most of the stations, as the simulation show an overestimation in the vast majority of cases 
(32 out of the 34 control stations). This is not surprising, as no infiltration is considered when 
converting the runoff into discharge in the simulations, leading to a larger amount of runoff 
pouring straight into the river flows.  
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More flow-duration curves are shown on Figure 8, for five other rivers that display different 
results. In two cases, VHM 205 and VHM 206 (Figure 8), a very good match between simulated 
and measured discharge can be observed. They are both very small catchments associated to 
direct-runoff rivers, where the assumption that all of the runoff goes straight to the river within 
a day is valid. For the stations VHM 68, VHM 185 and VHM 408, the simulated discharge is 
overestimated, but the duration curves show different trends. In the first two cases, the flow-
duration curves based on measurements are more incurvated than the one based on simulations. 
While for VHM 408, the flow-duration curve based on measurements is almost flat which the 
simulated discharge fails to reproduce.  
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Figure 7 – Flow-duration curves for five stations including the 5% highest values 
comparing discharge from observations (blue lines) to simulations (brown lines). 
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 Figure 8 - Flow-duration curves for five stations including the 5% highest values 
comparing discharge from observations (blue lines) to simulations (brown lines). 
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4.2.2 Correction of the simulated discharge 

In order to correct the discharge overestimation noted in most simulated flow-duration curves 
of the 5% highest values (Figure 7 and Figure 8), the difference between simulated and observed 
discharge is assessed using a coefficient of proportionality. This coefficient will then be used as 
a correcting factor to improve the match between measured and simulated discharge. 

For each station, the mean coefficient of proportionality is calculated by comparing daily ranked 
discharge above the 95th, 90th and 75th percentiles. For the different percentiles, each coefficient 
is then averaged over all the stations that cluster together. Results are shown in Figure 9, in 
histograms, each cluster is represented by a panel on the figure. Individual stations are shown 
for each cluster, with a colour according to the amount of data the correcting coefficient was 
calculated on: light orange when averaged over the 5% highest discharge data (above 95th 
percentile), dark orange when averaged over the 10% highest data (above 90th percentile), and 
brown when averaged over the 25% highest data (above 75th percentile). The dashed lines show 
the average coefficient of proportionality for each cluster, with the colour matching the 
percentile the correction was based on. A coefficient of proportionality equal to 1 means there 
is no difference between simulated and observed discharge. Above 1, the mean observed values 
are higher than the simulations; under 1, the mean simulated values are higher than the measure-
ments. 

Results do not vary much between the coefficients based on the 95th, 90th and 75th percentiles. 
Stations within Cluster C and E show very similar results with their nearest-neighbours, with 
the coefficients varying within a 0.15 range among each station of those clusters. In the other 
clusters, results are overall good, although a few stations stand out: VHM 68 and 185 in Cluster 
A, VHM 205 and 206 in Cluster B, and VHM 233 and 408 in Cluster D, VHM 233 and VHM 
408. As expected from Figure 8, the coefficients of proportionality for stations VHM 205 and 
206 are close to 1, indicating the good match between the two datasets. Both stations VHM 185 
in Cluster A and VHM 408 in Cluster D, show very low coefficients, around 0.1, which is 
expected as the trends of the simulated and observed flow-duration curves were very different 
(see chapter 4.2.1).  

Results of the calculated average among the coefficient of proportionality (Figure 9, dashed 
lines) are extremely close , with variation within a 0.1 range between all percentiles, except in 
Cluster A. Stations belonging to Cluster B have a relatively high mean coefficient of 
proportionality (0.58 for the 95th and 75th percentiles, 0.59 for the 90th percentile), which can be 
attributed to the presence of VHM 205 and 206 among its members. The largest difference 
between observed and simulated discharge values can be found in Cluster E, where the average 
coefficient of proportionality is around 0.35. 

In order to adjust the simulated high discharge for each station to better fit the observed one, 
daily discharge values calculated from the ICRA runoff are multiplied by the mean coefficient 
of proportionality from the belonging cluster. For instance, to obtain the light orange curves on 
the figure, simulated data were multiplied by 0.36 for the stations belonging to Cluster A, 0.58 
for stations from Cluster B, and so on. Same for the orange and red lines, where data were 
multiplied by the mean coefficients calculated from 90th and 75th percentiles, respectively. 

Results are shown on Figure 10 for the same stations that can be seen on Figure 7, one from 
each cluster. Daily values are represented in blue for the observed discharge, in brown for the 
simulated discharge before correction, in light orange after correction based on data above the 
95th percentile, in orange after correction based on data above the 90th percentile, and in red after 
correction based on data above the 75th percentile. For all the stations shown, results are 
significantly improved after applying the corrections. In the figure, results based on the different 
corrections do not vary much, with the corrected lines almost overlaying one another. Except 
for Cluster C, corrections derived from data above the 95th percentile give closer discharge to 
the measurements. For station VHM 200, only the red line is visible, as the correcting factors 
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are approximately the same, no matter if they were based on the 75th, 90th or 95th percentiles. 
Overall, the correcting factors improve the results from the reanalysis, making the highest 
simulated discharge values more in line with the measurements. 

Results for the rivers that showed the largest difference of coefficients of proportionality 
compared to the rest of stations within their cluster, are presented in Figure 11. The same stations 
were presented in Figure 8 and the results are not as successful for those five stations. For 
stations VHM 68, VHM 205 and VHM 206, the corrected timeseries are now too low. For 
station VHM 185, after corrections, simulated timeseries still overestimate the measurements. 
However, the two highest measured discharge values (above 100 m3 s-1) are better simulated 
than before applying the corrections. For station VHM 408, the corrected simulated discharge 
is quite far from the observed one, although it is closer than the uncorrected one.  
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Figure 9 – Histograms showing coefficients of proportionality for each control stations 
and based on values above the 75th (brown), 90th (orange) and 95th (light orange) 
percentiles. Stations are shown by cluster, and mean coefficients averaged among all 
stations are represented by the dashed lines. 
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Figure 10 - Flow-duration curves for five stations including the 5% highest values. 
Discharge values are based on observations (blue), and based on the ICRA dataset before 
(brown) and after applying the coefficients of proportionality (yellow, orange, and red). 
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Figure 11 - Flow-duration curves for five stations including the 5% highest values. 
Discharge values are based on observations (blue), and based on the ICRA dataset before 
(brown) and after applying the coefficients of proportionality (yellow, orange, and red). 
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4.3 Flood analysis for control stations 

4.3.1 Flood return levels 

In the rest of this study, only mean corrections based on data above the 95th percentiles are used. 
The Block Maxima method is applied to all control stations based on measured discharge and 
simulated timeseries derived from the ICRA dataset, before and after applying the correction 
factor.  

Return levels are calculated based on observations, and simulations before and after correction. 
The correction coefficient depends on the cluster in question, and is applied to the timeseries 
before the EVA. Daily flood return levels with a 10-, 25-, 50-, 100-, 200-, and 500-year return 
period are calculated for all stations. Three examples are shown in Table 3, for stations VHM 
200, VHM 110 and VHM 206. Here, stations VHM 200 and 206 belong to Cluster B, and the 
ICRA simulations are multiplied by the correction factor 0.58; while for VHM 110 (Cluster D), 
the simulations are multiplied by 0.46. For stations VHM 200 and VHM 110, results before 
correction show a large overestimation of the return levels compared to the measurements, with 
simulated values being more than twice the observed discharge for all return periods. For 
instance, the 200-year return level calculated from observations is 671 m3 s-1, and 1299 m3 s-1 
based on the simulations. After applying the correction, results based on the ICRA dataset are 
considerably lowered, and very close to the ones based on observations. After correction, the 
200-year return level for station VHM 200 is equal to 758 m3 s-1.  

These results are further illustrated on the return level plots presented in Figure 12 and 13. In 
those figures, discharge values are plotted against the return periods on a logarithmic scale. 
Here, values from the measured AMS between years 1980 and 2016 are represented by the blue 
dots. A straight line shows the fit between those data and return periods and horizontal dashed 
lines indicates the values for the 25-year flood. The same is done for discharge derived from the 
ICRA dataset on the top plots in red, and for simulated discharge after correction on the lower 
plot in orange. In both cases, results are significantly improved by the scaling, with simulated 
AMS much closer to the observation AMS after applying the correction. For instance, the 25-
year return levels percentage difference between simulation and observation for station VHM 
200 is 70.1 % before correction, and only 19.4 % after correction. For VHM 110, it decreases 
from 82.3% before correction to 9.5%.  

A counterexample is given for VHM 206 in Table 3 (bottom) and Figure 14. As explained 
before, this station showed a very good match between measured and simulated discharge right 
away, presumably because of the small size of the catchment and the fact that it is a direct-
runoff river, with minimal infiltration. As expected, the return level estimation suffers from 
applying the correcting factor, as is illustrated on the return level plot. Before correction, the 
25-year flood analysis only gives a 2 m3 s-1 difference between simulated and measured 
discharge, showing a very close fit between the two datasets. Once the analysis is redone after 
multiplying the simulated timeseries by the correction factor, the updated return level drops to 
84 m3 s-1 w, indicating a percentage difference of 54.5%, much larger than before the correction. 
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Table 3 – Return levels (m3 s-1) for stations VHM 200 (top), VHM 110 (middle), and VHM 
206 (bottom). Results are based on the measured discharge, simulated discharge from the 
ICRA runoff, and simulated discharge from the ICRA runoff after correction based on the 
values above the 95th percentile. Values are given for a 10-, 25-, 50-, 100-, 200-, and 
500-year return period. 

VHM 200 - Fnjóská 

 

Return-period 

Return levels (m3 s-1) 

Observations ICRA ICRA, corrected 

10 years 392 859 502 

25 years 479 996 582 

50 years 543 1098 641 

100 years 607 1199 700 

200 years 671 1299 758 

500 years 755 1432 836 

 

VHM 110 – Jökulsá á Dal 

 

Return-period 

Return levels (m3 s-1) 

Observations ICRA ICRA, corrected 

10 years 870 2125 974 

25 years 1026 2461 1128 

50 years 1142 2711 1242 

100 years 1257 2958 1356 

200 years 1371 3205 1469 

500 years 1522 3530 1618 

 

VHM 206 - Fellsá 

 

Return-period 

Return levels (m3 s-1) 

Observations ICRA ICRA, corrected 

10 years 120 122 71 

25 years 147 145 84 

50 years 166 161 94 

100 years 186 178 104 

200 years 206 195 114 

500 years 232 217 127 
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Figure 12 – Return level plot for station VHM 200, based on observations (blue), 
simulations before (red) and after correction (orange). Dashed-lines show the 25-year 
return level for the different dataset. 
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Figure 13 – Return level plot for station VHM 110, based on observations (blue), 
simulations before (red) and after correction (orange). Dashed-lines show the 25-year 
return level for the different dataset. 
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Figure 14 – Return level plot for station VHM 206, based on observations (blue), 
simulations before (red) and after correction (orange). Dashed-lines show the 25-year 
return level for the different dataset. 
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4.3.2 Closeness Coefficient values 

To simplify the comparison between observed and simulated extreme discharge values, a 
closeness coefficient (CC) is introduced to determine how well the simulated values match the 
measurements: 

𝐶𝐶𝐶𝐶 =  
min(𝑟𝑟𝑜𝑜𝑠𝑠, 𝑠𝑠𝑠𝑠𝑚𝑚)
max (𝑟𝑟𝑜𝑜𝑠𝑠, 𝑠𝑠𝑠𝑠𝑚𝑚)

× 100 

This coefficient quantifies simply how close the simulated value is to the observed one, 
independently of whether the value is higher or lower than the observation. In that sense, CC 
can be used as a percentage match between two values of a same event. 

Coefficients were calculated for all the control stations for the 25-, and 200-year return levels, 
before and after applying the correction. Results are shown in map form, on Figure 15 and 16. 
On the maps, the CC are given a colour code according to their values: if the percentage match 
is below 50%, the value appears on a red circle. If the percentage match is between 50 and 75%, 
the circle is orange; and if it is higher than 75%, the circle is green. As expected, both for the 
25- and the 200-year floods, the values are greatly improved by scaling the simulated timeseries. 
For the 25-year flood, before applying the correction, 20 CC values are inferior to 50%, 7 
stations between 50 and 75%, and 7 stations are superior to 75%. After applying the correction, 
only 7 stations have a CC inferior to 50%, 15 stations have a CC between 50 and 75%, and 12 
stations have a CC superior to 75%. Maps on Figure 16 show similar results for the 200-year 
flood. Before correction: 17 stations under 50% (7 after correction), 11 stations between 50 and 
75% (16 after correction), and 6 stations above 75% (11 after correction).  

Those results are also presented in Table 4, ordered by cluster. Scaling down the ICRA 
reanalysis leads to closer results between observation and simulation in 27 cases out of 34. Mean 
CC values indicate that overall, all the clusters benefit from the correction. In Cluster A and C, 
two stations (VHM 68 for Cluster A, VHM 233 for Cluster D) have a lower CC after correction. 
In Cluster B, this concerns 3 stations (VHM 205, 206 and 148); 2 stations for Cluster C (VHM 
411 and 128); none for Cluster E. CC values were also ranked decreasingly before and after 
correction for the 25-year return level on histograms, shown on Figure 17. Before correcting the 
simulated discharge, only 1 station had a CC above 90% for the 25-year flood, while after 
correction, 6 stations have a CC above 90%.  
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Figure 15 – Closeness Coefficient map comparing 25-year flood return level between 
observation and ICRA before (top) and after (bottom) applying the correcting factor. 
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Figure 16 - Closeness Coefficient map comparing 200-year flood return level between 
observation and ICRA before (top) and after (bottom) applying the correcting factor. 
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Table 4 – Closeness Coefficient values between measurements and simulated discharge, 
before and after correction. Results are shown for the 25-, and 200-year return periods 
for all control stations. Mean CC values are given in bold for each cluster. 

 Closeness Coefficient (%) 

25-year return period 200-year return period 

ICRA ICRA, 
corrected 

ICRA ICRA, 
corrected 

 

 

Cluster A 

 

VHM 68  77 48 80 45 
VHM 59  27 75 28 77 
VHM 271  18 50 17 47 
VHM 81  37 100 39 93 
VHM 43  21 59 21 56 
VHM 185  16 43 19 52 
Mean CC 33 63 34 62 

 

 

 

 

 

Cluster B 

VHM 92  31 53 29 50 
VHM 51  39 67 40 68 
VHM 83  48 83 50 86 
VHM 198  73 80 79 73 
VHM 149  64 92 65 90 
VHM 200  48 82 52 89 
VHM 38  43 73 45 78 
VHM 206  99 57 95 55 
VHM 148  88 66 97 60 
VHM 400  29 49 29 50 
VHM 205  77 45 69 41 
VHM 19  52 90 56 96 
VHM 204  57 97 61 95 
Mean CC  58 72 59 72 

 

 

Cluster C 

VHM 10  43 85 46 90 
VHM 45  51 99 53 94 
VHM 12  68 74 72 70 
VHM 411  82 42 71 36 
VHM 128  81 63 83 61 
Mean CC    65 73  65 70 

 

 

Cluster D 

VHM 162 29 64 31 68 
VHM 110 42 91 43 93 
VHM 102 28 62 29 64 
VHM 233  89 51 98 45 
VHM 150  61 74 69 66 
VHM 408  12 26 14 30 
Mean CC 44 74 57 73 

 

Cluster E 

VHM 116  8 25 8 23 
VHM 121  24 74 24 74 
VHM 48  46 72 51 65 
VHM 238  42 80 45 74 
Mean CC 30 63 32 59 
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Figure 17 – Histograms presenting ranked CC values for the 25-year flood between 
observed and simulated discharge before (top) and after (bottom) correction. Horizontal 
dashed lines show the 25, 50 and 75 % CC thresholds. 
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4.4 Flood analysis for other stations 
In the last part of this project the methodology is tested on different watersheds. In section 3, 
stations were classified with a cluster analysis and results were shown on two dendrograms: one 
based on the measured discharge, the other based on simulations derived from the ICRA runoff 
(REF). Out of the 44 stations used for the analysis: three were discarded because of the presence 
of Skaftárhlaup, 34 are clustered similarly on both dendrograms, and seven belong to different 
clusters.  

As a test, it is decided to treat those seven rivers according to their clustering based on the 
simulations, as would be done if they were ungauged. This will presumably lead to larger 
differences between return levels based on measured and simulated datasets, than if the cluster 
analysis based on measurements was used. 

According to the cluster analysis based on the ICRA dataset, the seven stations belong to the 
following clusters: 

- Cluster A: VHM 30, VHM 60, VHM 64, VHM 218 
- Cluster B: VHM 144 
- Cluster D: VHM 66 
- Cluster E: VHM 26 

Results for the 25-year flood return level are presented for the seven stations in Table 5 and CC 
values comparing simulation to observations are shown on Figure 18. Before scaling down the 
discharge timeseries, CC values for all stations appear in red, indicating lower than 50% match 
between simulated and observed discharge, ranging from 21% (VHM 60 – Eystri-Rangá) to 
42% (VHM 26 – Sandá). After applying the correction, flood return levels based on 
measurements and simulations show a better match: six stations have a CC value in the range 
50-75%, and one station (VHM 30 – Þjórsá) has a CC value of 83%, appearing in green on the 
map. Therefore, all those stations benefit from being scaled by a correcting factor. 

Table 5 – 25-year flood return level for 7 stations based on the ICRA dataset before and 
after scaling by the correcting factor. 

 

 

  

 25-year return level (m3 s-1) 
Observations ICRA ICRA, 

corrected 

 

Cluster A 

VHM 30 1981 5844 2239 
VHM 60 118 567 216 
VHM 64 1599 5784 2208 
VHM 218 215 756 288 

Cluster B VHM 144 252 686 401 
Cluster D VHM 66 410 1652 757 
Cluster E VHM 26 126 302 89 
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Figure 18 – Closeness Coefficient map comparing 25-year flood return level between 
observation and ICRA before (top) and after (bottom) applying the correcting factor, for 
seven stations. 
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5 Discussion 
The goal of this study was to investigate if the ICRA runoff can be used to estimate flood 
extremes. This proved quite successful. Simulated runoff was accumulated on a daily-basis, 
which made comparison with daily-averaged observed discharge at several gauging stations, 
possible. 

Commonly used for flood analysis is the instantaneous daily peak discharge. This has been 
applied before in Iceland (Crochet, 2012; Hróðmarsson et al., 2009, 2018) and extracting the 
instantaneous peak value from daily discharge has also been the subject of hydrological research 
over the years (Fill and Steiner, 2003; Chen et al., 2017). Flood analysis based on instantaneous 
data is of major interest: return levels reach much higher values, and such flood estimates are 
therefore more likely to give more realistic view of possible effects of flood extremes. 
Extracting the instantaneous peak from daily discharge has not been treated here and should be 
investigated in future works. 

In section 3, a hierarchical cluster analysis was used to determine which rivers showed the most 
similarities and grouped together. Five clusters were defined from the dendrograms, which then 
led to a group of 32 control stations (after discarding jökulhlaup-affected rivers), that clustered 
similarly in both analyses. The coefficients later used to correct the simulated timeseries were 
cluster-dependent, and a different number of clusters would have changed the values of the 
averaged coefficients. Even though the coefficients of proportionality did not oscillate much 
between the individual stations, a few stations stood out (such as VHM 205 and 206) and a 
different interpretation of the clustering could be investigated to refine the values of the 
corrections applied. 

For comparison purposes, the flood analysis presented in section 4 was based on observed and 
simulated datasets that were identical for each station, and days with no observations were also 
discarded in the reanalysis. Therefore, the AMS used for the calculation of the return levels was 
for some stations shorter than the 40 years available, and in the future a fuller use of this dataset 
could be appreciated. Moreover, for consistency purposes with previous studies, the Block 
Maxima method was used to determine the return levels. A sensitivity test could be performed 
to see how different those results would be if another method, such as the Peak-over-Threshold, 
was used.  

Section 4 showed that applying a correction to the simulated discharge improved the results in 
27 out of 34 cases. The seven remaining stations suffered from the correction and gave better 
results before applying the correction factor. Some of them are small direct-runoff rivers that 
were simulated correctly before applying the coefficients, while others are more problematic as 
the reanalysis failed to reproduce the trend of their duration curve. Expanding the analysis to a 
larger number of stations in the future would help understand what are the limiting factors in 
which cases the correction should not be used. 
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6 Conclusions 
In this research, a first attempt to estimate extreme flood values based on simulated data from 
the ICRA model has been proposed. Firstly, 44 gauging stations that have been recording 
discharge of the main rivers in Iceland were selected. Runoff for 38-years of reanalysis was 
extracted and summed daily for all the catchments associated with the selected rivers. The runoff 
was then converted into average discharge. By the end of the first step of the project, two sets 
of daily discharge series were available, one built on simulated runoff and the other one on 
observed discharge.  

In the second part of the project, it was tested if the dataset built on the ICRA data would give 
similar results of hierarchical clusters as the observed dataset. In both cases, discharge 
timeseries were normalized and combined in different ways to reflect the seasonality, duration 
curves and mass curves of the rivers. Various catchment characteristics were also added to the 
analysis and results were presented on two dendrograms. Rivers clustered in five groups, 
according to river types and geographical location. Most of the catchments (36 out of 44 gauging 
stations) clustered similarly between the two datasets. Since the data was normalized before 
performing the cluster analysis, the results do not give any insight into the closeness of the 
discharge values, but showed that the conversion of the runoff successfully kept the general 
behaviour of the rivers. Three stations associated to river Skaftá and subject to frequent 
jökulhlaup were discarded, and in the end, 34 stations were used as control stations, and seven 
left to be used later in this study. 

Thirdly, discharge values from both datasets were compared with a focus on values above the 
95th percentile in order to limit the data only to the extremes. Discharge for all control stations 
were presented on duration curves. In the vast majority of cases (32 out of 34 rivers), the 
discharge was overestimated in the simulations, which reflects the lack of infiltration in the 
runoff conversion model. However, the general trend of the discharge was well simulated. It 
was therefore decided to apply a correcting factor to scale down the simulations and obtain 
values closer to the observed data. This was done by calculating the coefficient of propor-
tionality for each individual station, based on highest discharge data over the 75th, 90th and 95th 
percentiles. Those coefficients were then averaged by cluster and applied to the simulated 
dataset, which greatly improved the results. The correcting coefficient based on the 95th 
percentile gave the closest match with the observations.  

An EVA was then performed using the Block Maxima method on both the observed and 
simulated timeseries, before and after correction. Closeness Coefficients were calculated and 
showed a great improvement of the return levels after applying the correction for 27 out of 34 
rivers. Eventually, the seven stations left from the control station group were studied, applying 
a methodology that would be applied on ungauged catchments in the future. 25-year flood 
values were then calculated and compared to the observed values, showing that in all cases, the 
CC values were significantly improved. 

Overall, these result show that extreme discharge values based on catchment-accumulated 
runoff from the ICRA dataset is able to simulate the observed high discharge after correction. 
The findings of this study represent an initial methodology that could successfully assess design-
flood values for ungauged catchments throughout the country.  

 



40 

References 
Atlason, H., Þórarinsdóttir, T., Roberts, M. J., Massad, A.-G. R., Priet-Mahéo, M., Björnsson, 

B. B. (2021). Notkun einfalds vatnafarslíkans á vatnafarslega ólíkum svæðum á Íslandi. 
Veðurstofa Íslands 

Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W. & Køltzow, M.Ø. 
(2017). The HARMONIE-AROME model configuration in the ALADIN-HIRLAM NWP 
system. Mon. Wea. Rev., 145, 1919–1935 

Bo Chen, Witold F. Krajewski, Fan Liu, Weihua Fang, Zongxue Xu (2017). Estimating 
instantaneous peak flow from mean daily flow. Hydrology Research, 1 December 2017; 
48 (6): 1474–1488. doi.org/10.2166/nh.2017.200 

Coles, S. (2001). An introduction to Statistical Modeling of Extreme Values. London; Springer. 
Crochet, P. (2012). Flood-Duration-Frequency modeling. Application to ten catchments in 

Northern Iceland. Veðurstofa Íslands. VÍ 2012-006 
Crochet, P. & Þórarinsdóttir, T. (2014). Flood frequency estimation for ungauged catchments 

inIceland by combined hydrological modelling and regional frequency analysis. 
Veðurstofa Íslands. VÍ 2014–001 

Crochet, P. & Þórarinsdóttir, T. (2015). Regional flood frequency analysis: A case study in 
Eastern Iceland. Veðurstofa Íslands. VÍ 2015-007 

Demirel, M. & Kahya, E. (2007). Hydrological determination of hierarchical clustering scheme 
by using small experimental matrix., (bls. 161-168). doi:10.13140/RG.2.1.1885.6720 

Fill, H. D. & Steiner, A.A. (2003). Estimating instantaneous peak flow from mean daily flow 
data. Journal of Hydrologic Engineering, 8, 365–369 

Hilmar B. Hróðmarsson, Njáll Fannar Reynisson & Ólafur F. Gíslason (2009). Flóð íslenskra 
vatnsfalla–flóðagreining rennslisraða. Veðurstofa Íslands. VÍ 2009-001. 

Hróðmarsson, H. B., & Þórarinsdóttir, T. (2018). Flóð íslenskra vatnsfalla, flóðagreining 
rennslisraða. Veðurstofa Íslands. VÍ 2018-003. 

Massad, A.-G. R., Petersen, G. N., Þórarinsdóttir, T., Roberts, M.J. (2020). Reassessment of 
return levels in Iceland. Veðurstofa Íslands. VÍ 2020-008. 

Nawri, N., Pálmason, B., Petersen, G.N., Björnsson, H. & Þorsteinsson, S. (2017). The ICRA 
atmospheric reanalysis project for Iceland. Veðurstofa Íslands. VÍ 2017-005 

Pagneux, E., Jóhannsdóttir, G.E., Þórarinsdóttir, T., Hróðmarsson, H. & Egilson, D. (2017). 
Flóð á vatnasviðum Eyjafjarðarár, Héraðsvatna, Hvítár í Borgarfirði, Lagarfljóts og 
Skjálfandafljóts: I. Yfirlit yfir orsakir, stærð og afleiðingar sögulegra atburða. Veðurstofa 
Íslands. VÍ 2017-006 

Pagneux, E., Jónsson, M.A., Þórarinsdóttir, T., Björnsson, B.B., Egilson, D. & Roberts, M.J. 
(2018). Hættumat vegna jökulhlaupa í Skaftá: Hermun flóðasviðsmynda. Veðurstofa 
Íslands. VÍ 2018-008 

Pagneux, E., Jónsson, M. Á., Björnsson, B. B., Pétursdóttir, S., Reynisson, N. F., Hróðmarsson, 
H. B., Einarsson, B. & Roberts, M. J. (2019). Hættumat vegna vatnsflóða í Ölfusá. 
Veðurstofa Íslands. VÍ 2019-013 

Priet-Mahéo, M., Massad, A.-G. R., Pétursdóttir, S., Þórarinsdóttir, T. & Egilson, D. (2019). 
Daglegar rennslisspár með notkun hliðstæðrar greiningar Harmonieveðurgagna. 
Veðurstofa Íslands 

Priet-Mahéo, M., Massad, A.-G. R., Þórarinsdóttir, T., Roberts, M.J. (2020). Veflausn með 
daglegum rennslisspám sem byggist á hliðstæðri greiningu veðurgagna. Veðurstofa Íslands 

https://doi.org/10.2166/nh.2017.200


41 

Rist, S. (1990). Vatns er þörf. Reykjavík: Bókaútgáfa Menningarsjóðs. 
Stefánsdóttir, G., Björnsson, B.B., Magnússon, S., & Egilson, D. (2014). Verklokaskýrsla vegna 

stjórnar vatnamála - Vinna ársins 2013. Veðurstofa Íslands 
Þórarinsdóttir, T., Roberts, M.J., Wallevik, J.E., Björnsson, B. B., Massad, A.-G., R. (2021). 

Hættumat vatnasviða: Eyjafjarðará, Héraðsvötn, Hvítá í Borgarfirði, Lagarfljót og 
Skjálfandafljót. Veðurstofa Íslands 

 

 


	Cover
	Lykilsíða
	Table of Contents
	1 Introduction
	2 Data
	2.1 Measurements from the gauging station network
	2.2 Simulated runoff from the Icelandic Reanalysis
	2.2.1 The Icelandic Reanalysis (ICRA), and extraction of the relevant variables
	2.2.2 Conversion of runoff into discharge


	3 Cluster Analysis
	3.1 Methodology
	3.2 Results

	4  Extreme Value Analysis
	4.1 Methodology
	4.2 Comparison between simulated and observed discharge
	4.2.1 Flow-duration curves
	4.2.2 Correction of the simulated discharge

	4.3 Flood analysis for control stations
	4.3.1 Flood return levels
	4.3.2 Closeness Coefficient values

	4.4 Flood analysis for other stations

	5 Discussion
	6 Conclusions
	References

