

Design and Construction of Berm Breakwaters

Jentsje van der Meer - Van der Meer Consulting UNESCO-IHE

Sigurdur Sigurdarson - Icelandic Road and Coastal Administration IceBreak Consulting Engineers

Contents

- New guidance
- Classification of berm breakwaters
- Geometrical design guidance
- Design spreadsheet
- Example for $H_{sD} = 5 \text{ m and } 6-10 \text{ t}$
- Comparison with conventional rock design
- Quarry yield large rock
- Application in arctic area
- Conclusions

Advanced Series on Ocean Engineering --- Volume 40

DESIGN AND CONSTRUCTION OF BERM BREAKWATERS

Jentsje van der Meer Sigurdur Sigurdarson

Quote WSSPJO20 at our World Scientific site to enjoy 20% off!

Advanced Series on Ocean Englocering -- Volume 40

Jentsje van der Meer Sigurdur Sigurdarson

World Scientific

Advanced Series on Ocean Engineering - Volume 40

DESIGN AND CONSTRUCTION OF BERM BREAKWATERS

by

Jentsje van der Meer

Van der Meer Consulting BV, The Netherlands & UNESCO-IHE, The Netherlands

Sigurdur Sigurdarson

IceBreak Consulting Engineers ehf, Iceland

at www.worldscientific.com/worldscibooks/10.1142/9936

van der Mec

OF BERM BREAKWATERS

New book on Berm Breakwaters

Design and Construction of Berm Breakwaters

Available since November 2016

Based on cooperative work, both in the scientific as well as in the practical field, with a number of papers presented

Chapters

- 1. History of Modern Berm Breakwaters
- 2. Classification and Types of Berm Breakwaters
- 3. Prediction on Stability and Reshaping
- Functional Behaviour: Wave Overtopping, Reflection and Transmission
- 5. Geometrical Design of the Cross-section
- 6. Armourstone and Quarrying
- 7. Construction
- 8. Geometrical Design into Practice, Examples
- 9. Constructed Examples

DESIGN AND CONSTRUCTION OF BERM BREAKWATERS

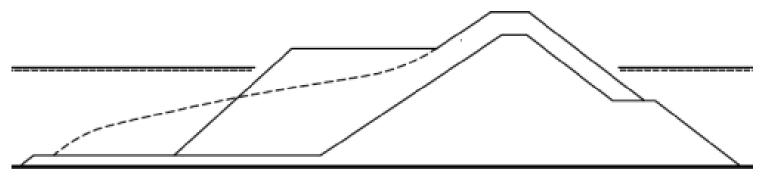
Jentsje van der Meer Sigurdur Sigurdarson

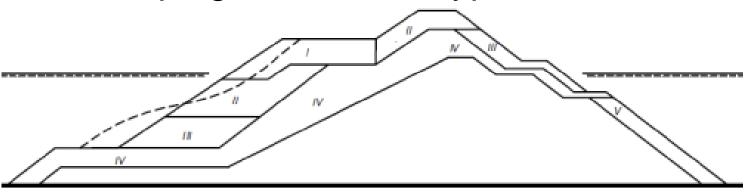
World Scientific



Iceland; berm breakwater

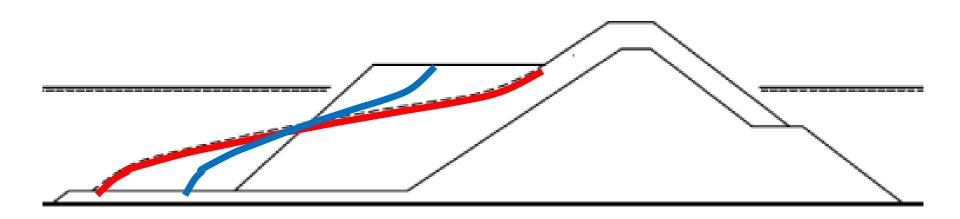
Sirevåg, Norway; berm breakwater


Sirevåg, Norway; berm breakwater after design storm



Development in berm breakwater design

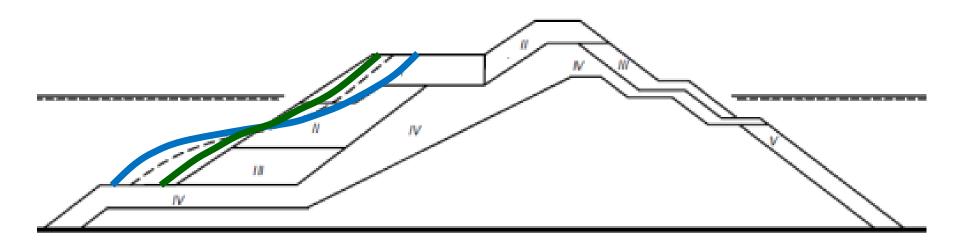
Originally: reshaping mass armoured


Developing to Icelandic-type

Mass armoured berm breakwater

For classification: design wave height = 100 years return period

Fully reshaping berm breakwater (mass armoured)


Partly reshaping berm breakwater (mass armoured)

Mainly difference is stone size

Icelandic-type berm breakwater

For classification: design wave height = 100 years return period

Partly reshaping Icelandic-type berm breakwater

Hardly reshaping Icelandic-type berm breakwater

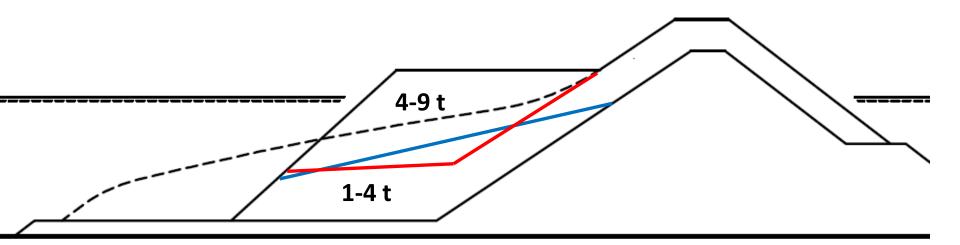
Mainly difference is stone size Class I

New classification

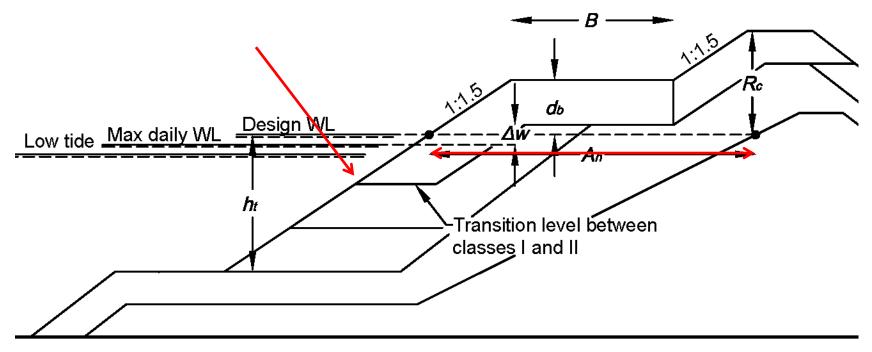
Breakwater

Hardly reshaping berm breakwater (Icelandic-type) Partly reshaping Icelandic-type berm breakwater Partly reshaping mass armoured berm breakwater Fully reshaping berm breakwater (mass armoured)

Abl	brevation HR-IC	$H_{s}/\Delta D_{n50}$	S _d	Rec/D _{n50}
be)	HR-IC	1.7 - 2.0	2 - 8	0.5 - 2
r	PR-IC	2.0 - 2.5	10 - 20	1 - 5
er	PR-MA	2.0 - 2.5	10 - 20	1 - 5
ed)	FR-MA	2.5 - 3.0		3 - 10


Design is a choice of availability of rock and wanted reshaping

Proposal for new fully reshaping berm breakwater


Do not allow one wide graded rock class (1-9 t), but divide in two narrower classes (1-4 t and 4-9 t) No extra costs, but larger stability!

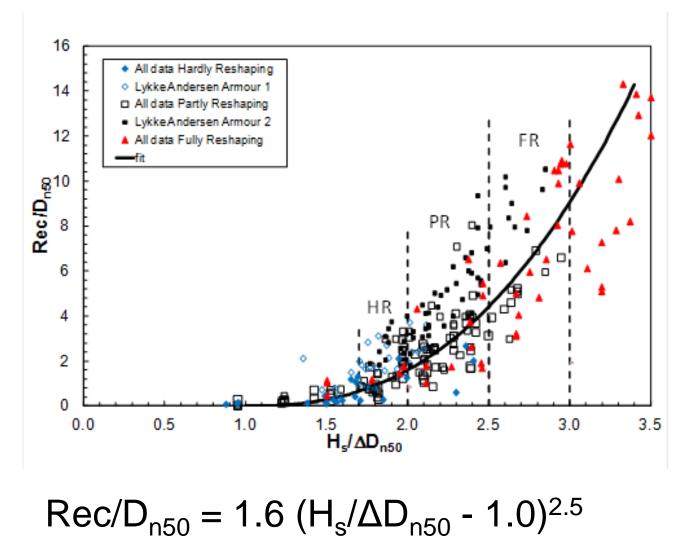
Quite some fully reshaping berm breakwaters needed maintenance over 15-25 years.

Geometrical design guidance

- berm width B (recession, resiliency)
- berm level d_b
- crest level R_c (overtopping)
- horizontal armour height A_h
- transition to Class II
- toe depth h_t

Berm width and resiliency

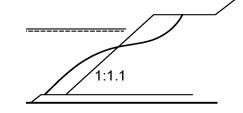
Resiliency: a percentage, $P_{\%}$, of the berm width, B, that may erode under the design condition H_{sD} .


Very resilient, hardly reshaping, IC HR $P_{\%} = 10-20\%$ Good resiliency, partly reshaping, IC PR or MA PR $P_{\%} = 20-40\%$ Minimum resiliency, fully reshaping, MA FR $P_{\%} \leq 70\%$

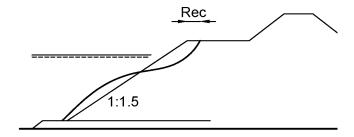
Berm width $B = \text{Rec}/(P_{\%}/100)$

Example Rec = 4 m; P% = 30% B = 4/0.3 = 13.3 m

New recession formula – average trend



Front Slope Stability - Influences

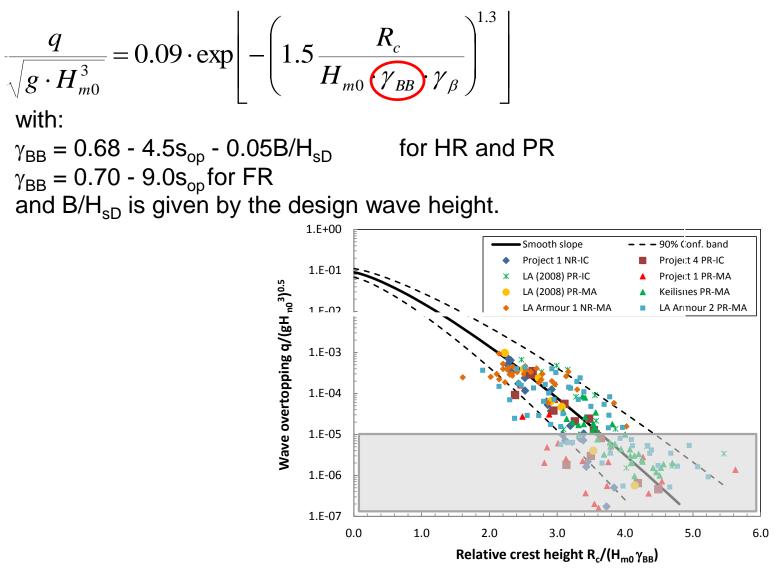

Other parameters influence berm recession

Three geometrical parameters identified

Down slope Gentle slope less recession



Rec


Berm level and width High berm less recession Large berm width reduces recession

Toe depth High toe reduces recession

Wave overtopping at berm breakwaters

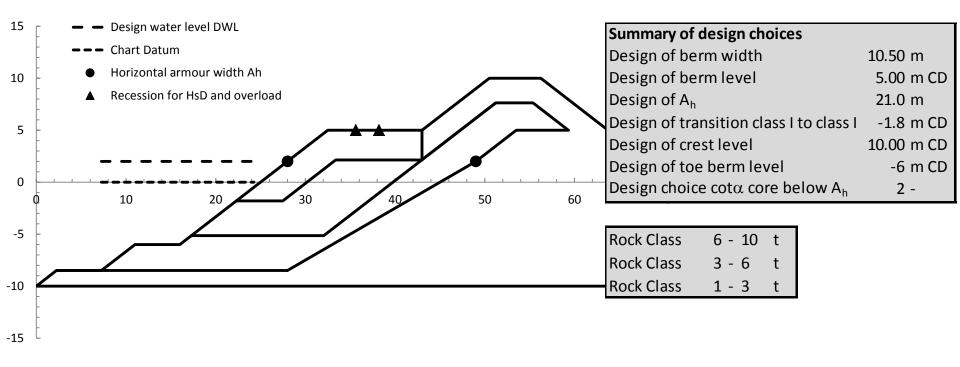
Conceptual design spreadsheet www.vdm-c.nl

General conditions		Outcome main parameters		Minimum transition level to class II	
Design wave height H _{sD}	3 m	Wave steepness s _{op}	0.020 -	For H _{sD} at lowest level	-0.2 m CD
Peak period T _p	9.8 s	Relative mass density Δ	1.54 -	For lowest level with according H _s	-1.2 m CD
Overload H _s	3.5 m	Median mass Class I M ₅₀	2.5 t	Design choice of transition for IC (3 rock classes	-1.8 m CD
Design water level DWL	1 m CD	Nominal diameter Class I D _{n50}	0.99 m	Transition lower class for MA (2 rock classes)	-1.8 m CD
Lowest water level with H _{sD}	1 m CD	Stability number $H_{sD}/\Delta D_{n50}$	1.98 -		
Lowest storm level	0 m CD	Type of berm breakwater	Hardly reshaping	Crest level (γ_{β} = 1)	
H _s at lowest storm level	3 m	Number of rock classes for berm	2	If no overtopping criteria, R _{c min}	4.6 m CD
Mean High Water Spring	1 m CD	Basic recession for H _{sD} (no adaptation)	1.49 m	If no overtopping criteria, R _{c max}	5.2 m CD
Bottom level of foreshore at toe of structu	-9 m CD	Recession for overload (no adaptation)	2.28 m	For given allowable overtopping, q, γ_{BB}	0.46
Allowable overtopping q for H _{sD}	5 l/s per m	Nominal diameter Class II, D _{n50}	0.61 m	Required crest level for design conditions	4.93 m CD
Allowable overtopping q for overload	20 l/s per m	Nominal diameter Class III, D _{n50}	No Class	Required crest level for overload	4.87 m CD
Mass density water	1025 kg/m ³			Design choice of crest level	4.80 m CD
Mass density rock	2600 kg/m ³	Resiliency, berm width and level			
		Wanted resiliency	20 %	Check possibility of toe berm at level h _t	
Choice of rock classes		Resulting Berm width B from resiliency	7.47 m	Lowest possible toe level (two layers)	-6.27 m CD
Rock Class I: minimum mass (0-15%)	1 t	Minimum berm width B _{min} from geomet	2.96 m	Design conditions	
Rock Class I: maximum mass (85-100%)	4 t	Berm level 0.6 H _{sD}	2.8 m CD	Allowable damage level for H _{sD} , N _{od}	2 -
Rock Class II: minimum mass (0-15%)	0.2 t	Δw for waves during construction	1 m	<i>Highest</i> level of toe for H _{sD} with chosen N _{od}	-3.83 m CD
Rock Class II: maximum mass (85-100%)	1 t	MHWS plus Δw = working level	2 m CD	Check validity range h _t /D _{n50}	7.9 ok
Rock Class III: M _{min} (leave open for MA)	t	Minimum berm level from construction	3.97 m CD	Check validity range h _t /h	0.48 ok
Rock Class III: M _{max} (leave open for MA)	t	Design choice of berm width	8.00 m	Overload conditions	
		Design choice of berm level	4.00 m CD	Allowable damage level for overload, N _{od}	4 -
				Highest level of toe for overload with chosen N	-4.12 m CD
		Required horizontal armour width A _h	11.9 m	Check validity range h _t /D _{n50}	8.3 ok
		Design choice of A _h	12.0 m	Check validity range h _t /h	0.51 ok
				Design choice of toe berm level (0 if no berm)	0 m CD
				Design choice $\cot \alpha$ core below A_h	1.5 -

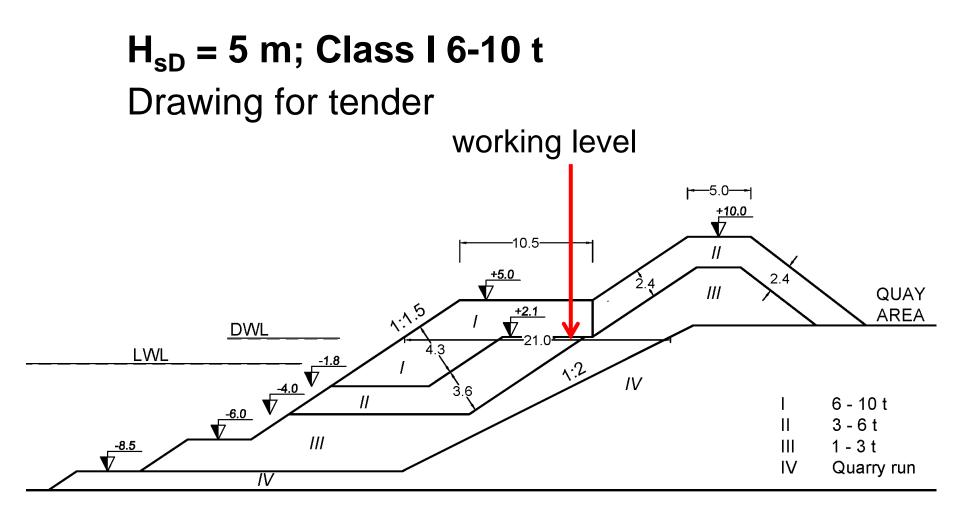
Design spreadsheet result

$H_{sD} = 5 m$; Class I 10-20 t

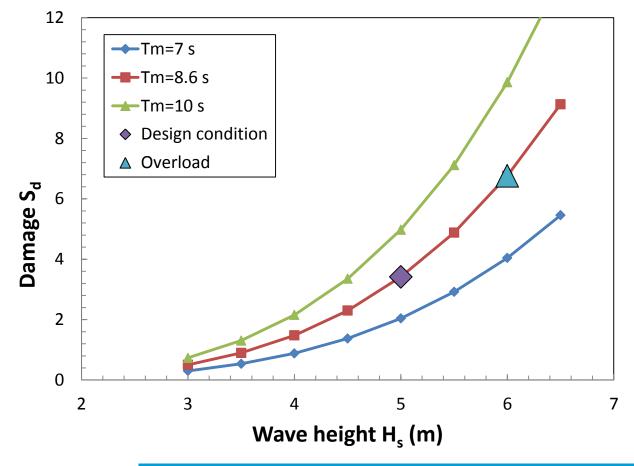
15	– – Design water level DWL		
-	Chart Datum	Summary of design choices	
10	Horizontal armour width Ah	Design of berm width	8.50 m
-	▲ Recession for HsD and overload	Design of berm level	5.50 m CD
5 -		Design of A _h	17.0 m
5		Design of transition class I to class I	-1.8 m CD
-		Design of crest level	10.00 m CD
0	· · · · • • • • • • • • • • • • • • • •	Design of toe berm level	0 m CD
Ō	10 22 30 40 50	Design choice $\cot \alpha$ core below A_h	1.5 -
-5			
		Rock Class 10 - 20 t	
-		Rock Class 4 - 10 t	
-10		Rock Class 1 - 4 t	
-			
-15			

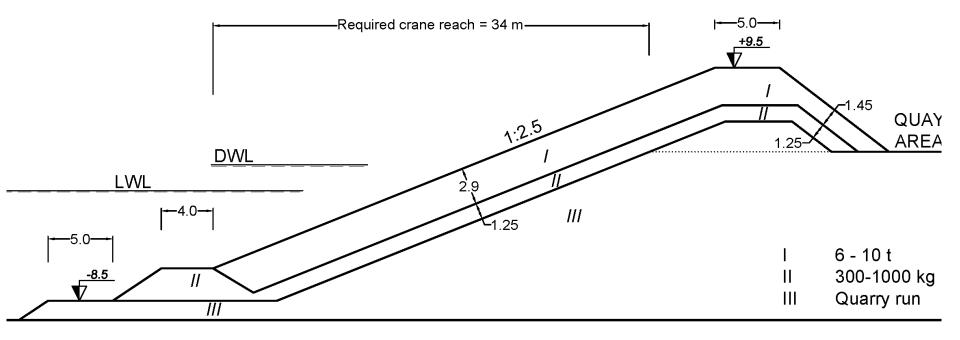


Rock classes versus stability numbers

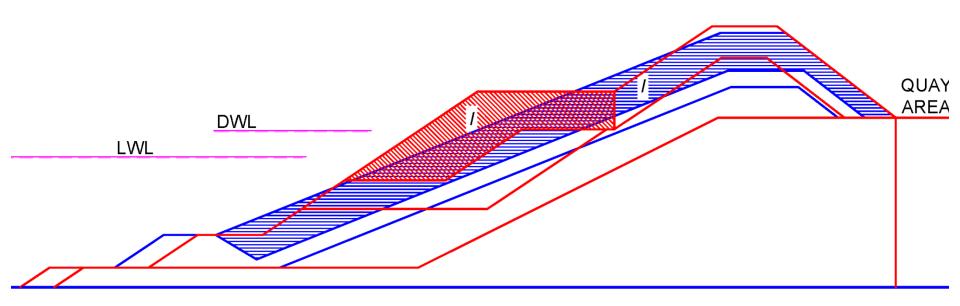

		Stability n	umber $H_{sD}/\Delta D_{n50}$			
Dedicated quarry	M ₅₀ (t)	$H_{sD} = 3 m$	$H_{sD} = 5 m$	$H_{sD} = 7 m$		
Class 20-35 t	25.0	0.87	1.46	2.04		
Class 10-20 t	15.0	1.04	1.73	2.42		
Class 4-10 t	7.0	1.34	2.23	3.12		
Class 1-4 t	2.5	1.88	3.14	4.39		
Class 0.2-1 t	under laye	r				
Class 2-6 t	4.0	1.61	2.68	3.76		
Class 0.5-2 t	1.2	2.41	4.01	5.61		
Standard gradings						
Class 10-15 t	12.5	1.10	1.84	2.57		
Class 6-10 t	8.0	1.28 🔇	2.13	2.98		
Class 3-6 t	4.5	1.55	2.58	3.61		
Class 1-3 t	2.0	2.03	3.38	4.73		
Class 0.3-1 t	under laye	r				

H_{sD} = 5 m; Class I 6-10 t


Placing Class I rock from top of Class II


Conventional rock armour 6-10 t

Breakwat: damage curves for performance based design $\cot \alpha = 2.5$; P = 0.4; N = 3000

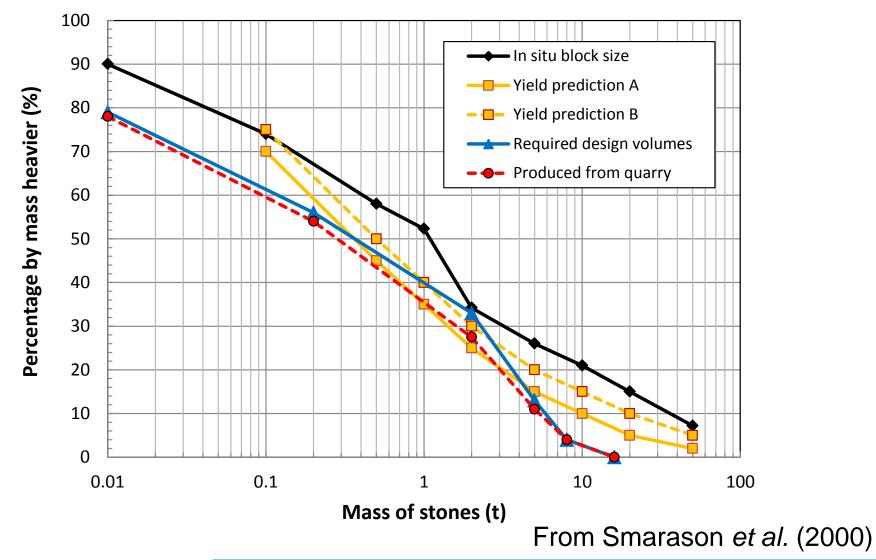


Conventional rock armour 6-10 t

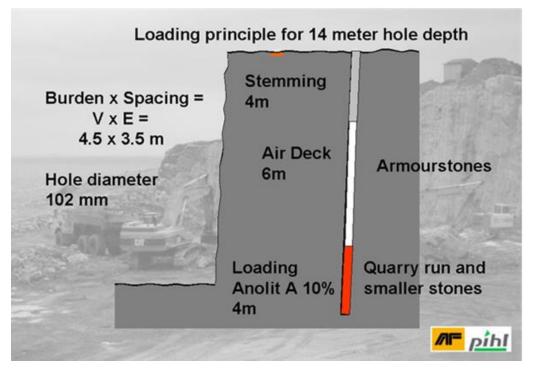
Comparison

Conventional: two times more 6-10 t rock Total volume of rock similar Berm breakwater: construction by excavator only

Construction – quarry. Getting the large rock!


Sirevåg berm breakwater, Norway

The rocks in quarry A



Quarry Yield Prediction, very important for dedicated quarry

Blasting for very large rock

Blasting design Hammerfest for 20-35 t rock

Low charge of explosives Bottom charges One row at the time Optimum spacings

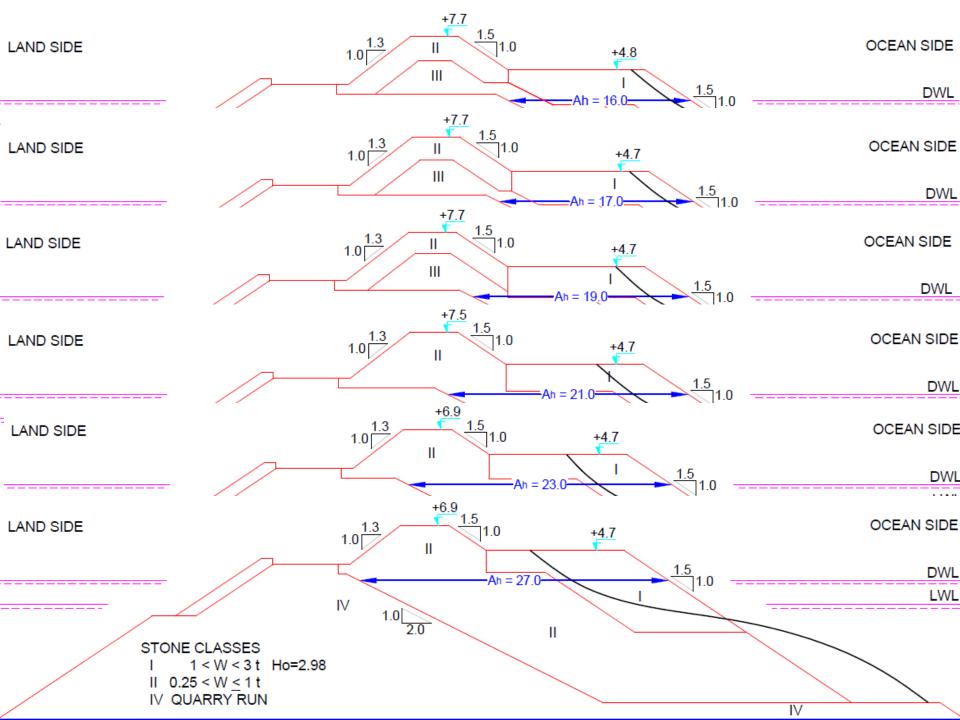
Hambantota Artificial Island Revetment

Application of the geometrical design rules

Potential project in arctic conditions Conceptual design for a road crossing a small bay, sheltered for ocean waves This area is difficult to reach Icefree only for few months each summer

Initially there was no information on rock

- Initial design conditions:
- $H_s = 4.4 \text{ m}$
- $T_p = 7.9 s$
- Spring tide +1.2 m CD
- Design water level +2.0 m CD
- No information on available rock

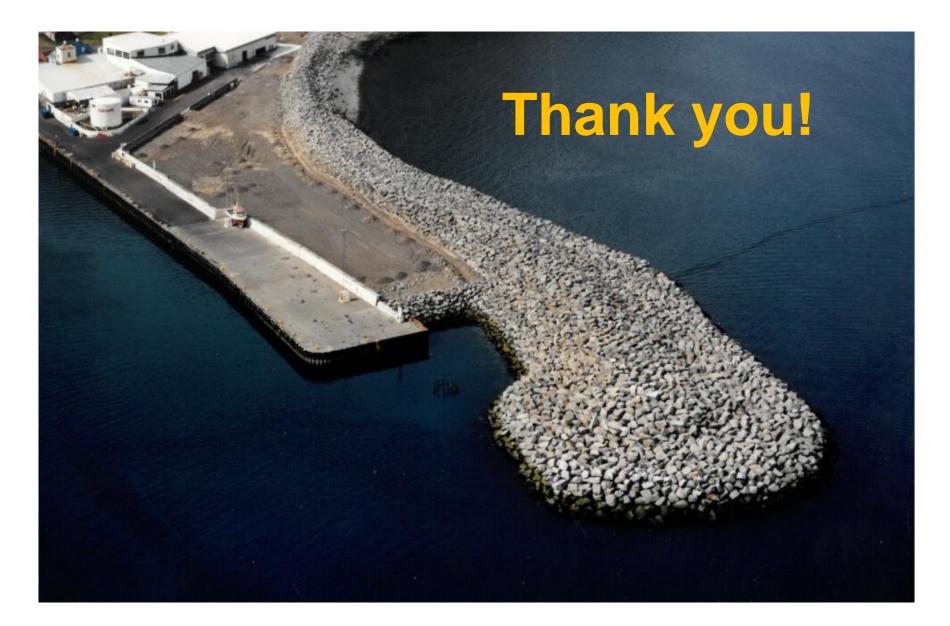

Parameters and volume of different design

Initial design wave height: $H_s = 4.4 \text{ m}$ $T_p = 7.9 \text{ s}$

Applying the geometrical design rules different desings can be suggested Heavy Class I rock with low stability number on top of the table Lighter Class I rock withe higher stability parameter further down Crest height and berm width determine the total volume Armour width increases with higher stability number

		Armour	Resi-	Berm	Berm	Crest	Large		
		width	liency	width	level	level	rock	Core	Total
Class I	$H_s/\Delta D_{n50}$	A _h (m)	(%)	B (m)	B _I (m)	C _I (m)	(m³/m)	(m³/m)	(m³/m)
5-15 t	1.74	16	10%	12	4.8	7.7	240	610	850
4-12 t	1.87	17	14%	12	4.7	7.7	250	600	850
3-9 t	2.06	19	21%	12	4.7	7.7	270	580	850
2-6 t	2.36	21	34%	12	4.7	7.5	290	550	840
1.5-4.5 t	2.60	23	46%	12	4.7	6.9	310	500	810
1-3 t	2.98	27	69%	12	4.7	6.9	350	460	810

Photos only information on possible rock sizes But no scale!



Conclusions on design of berm breakwaters

- Full guidance in the book
- Most guidance in papers (free download)
- Guidance on construction mainly in the book
- New classification: HR, PR and FR MA or IC
- Conceptual design spreadsheet available
- Design depends on: the rock you can get design wave height wanted resiliency
- Berm breakwater designs possible for 3 m to 7 m

