Updating the EurOtop manual on wave overtopping

Contents

1. Admissible overtopping

- 2. Summary of the changes
- 3. Calculation tools
- 4. Smooth slopes: dikes to vertical walls; zero freeboard, very steep slopes, promenades and storm walls

Revisions to the EurOtop manual - version 2

- 5. Armoured slopes
- 6. Vertical structures: new formulae on impulsive and pulsating waves
- 7. Closure

The developer or

architect's view

7HR Wallingford

The coastal engineer's view, including overtopping

Life at the seaside: the "sunny" view

Coastal vulnerability - transport

Coastal Structures workshop, Reykjavik

HR Wallingford

Users and purpose of the manual

Who is the Overtopping Manual for?

- Design engineers responsible for assessment and/or of new / existing structures, or management of existing structures;
- Well-informed clients and managers responsible for management / assessment of existing structures.

What will the Overtopping Manual be used for?

- Understand wave overtopping processes;
- Predict wave overtopping for existing and/or new structures;
- Guide optimisation and/or adaptation in response to changing requirements and/or climate change

OHRV	Nali

Example reclamations, processing of LNG and related products => Low-crest defences, but demand for low overtopping discharges.

© HR Wallingford 201

7HR Wallingford

Update of EurOtop Manual (2016)

Prof Kortenhaus, Prof Bruce, Prof Allsop, Prof DeRouck; Prof Troch, Prof Van der Meer and Prof Schüttrumpf Missing: Dr Pullen and Prof Zanuttigh

HR Wallingford	EurOtop 2 – the changes
Structure of the better explanat	e manual unchanged, improved formulae, some new data, ions.
Chapter 1:	Introduction
Chapter 2:	Wave and Water Levels - improved discussion on uncertainty
Chapter 3:	Tolerable Discharges – effects of wave height
Chapter 4:	Prediction of Overtopping – more on numerical modelling
Chapter 5:	Dikes and Embankments – revised formulae, especially for small freeboards, gentle and shallow beach slopes New material from Ghent on use of wave walls
Chapter 6:	Armoured Structures – new formulae for berm breakwaters
Chapter 7:	Vertical and Steep Structures – rationalise formulae, effects of impulsive vs. pulsating breaking
Chapter 8:	Case studies
16/05/2017	9 HR Walirobrd 2014

7HR Wallingford

How do we describe overtopping?

WHRWAIIIII Individual volumes, recent HYDRALAB+ tests

WHR Wallingtord Individual volumes, recent HYDRALAB+ tests

HR Wallingford

Mean discharge and peak volumes

Mean discharge and peak volumesThree-minute videos looking up-slope and downwards,
with the distribution of overtopping wave volumesFor conditions: $H_{m0} = 1 m; 2 m and 3 m$
q = 1; 5; 10; 30; 50 and 75 l/s per m

Individual overtopping wave volumes of:
100; 150; 200; 250; 300; 400; 500; 600; 700; 800; 1000; 1200; 1400; 1600; 1800; 2000; 2250; 2500; 2750 and 3000 I per m.
les the videos to make your own independent of televable

Use the videos to make your own judgement of tolerable overtopping

Discharge, peak volumes and wave height Structural design of breakwaters, seawalls, dikes and dams People and vehicles Droperty behind the defence Dure height classes: Mun f 1 m Rivers, wide canals and small lakes. Grass embankments. Mun f 1 n Rivers, wide canals and small lakes. Grass embankments Mun f 1 n Rivers, wide canals and small lakes. Embankment Beawalls with wave zone protected by rock, concerte units or block revetments. Grass crest, protected promenades. Mun f 1, Structure Beakwaters, reclamation beacht

HR Wallingford

Hazard type and reason	Mean discharge q (I/s per m)	Max volume V _{max} (I per m)
Rubble mound breakwaters; $H_{m0} > 5$ m; no damage	1	2,000-3,000
Rubble mound breakwaters; H_{m0} > 5 m; rear side designed for wave overtopping	5-10	10,000-20,000
Grass covered crest and landward slope; maintained and closed grass cover; H_{m0} = 1 $-$ 3 m $$	5	2,000-3,000
Grass covered crest and landward slope; not maintained grass cover, open spots, moss, bare patches; H_{m0} = 0.5 – 3 m $$	0.1	500
Grass covered crest and landward slope; H _{m0} < 1 m	5-10	500
Grass covered crest and landward slope; $\rm H_{m0}$ < 0.3 m	No limit	No limit

Limits for structural damage

© HR Wallingford 2014

16/05/2017

HR Wallingford

Limits for property / equipment

	q (l/s per m)	V _{max} (I per m)
Significant damage or sinking of larger yachts; H_{m0} > 5 m $$	>10	>5,000 - 30,000
Significant damage or sinking of larger yachts; H_{m0} = 3-5 m	>20	>5,000 - 30,000
Sinking small boats set 5-10 m from wall; H_{m0} = 3-5 m Damage to larger yachts	>5	>3,000-5,000
Safe for larger yachts; H _{m0} > 5 m	<5	<5,000
Safe for smaller boats set 5-10 m from wall; H_{m0} = 3-5 m	<1	<2,000
Building structure elements; H _{m0} = 1-3 m	≤1	<1,000
Damage to equipment set back 5-10m	≤1	<1,000

16/05/2017	01	R Wallingto
16/05/2017		R Waling

Limits for people and vehicles

Hazard type and reason	Mean discharge q (l/s per m)	Max volume V _{max} (l per m)
People at structures with possible violent overtopping, mostly vertical structures	No acces for any predicted overtopping	No acces for any predicted overtopping
People at rubble mound breakwater crest and at dike crest. Clear view on the sea. $\begin{array}{c} H_{m0}=3\ m\\ H_{m0}=2\ m\\ H_{m0}=1\ m\\ H_{m0}<0.5\ m\end{array}$	0.3 1 10-20 No limit	400 - 600 400 - 600 400 - 600 No limit
inspection. $H_{m0} = 3 \mbox{ m} \\ H_{m0} = 2 \mbox{ m} \\ H_{m0} = 1 \mbox{ m} \\ H_{m0} =$	<5 10-20 <75	1000-2000 1000-2000 1000-2000
Highways and roads, fast traffic	Close before debris in spray becomes dangerous	Close before debris in spray becomes dangerous
Railway tracks, slowly moving train	See cars on crest of a dike	See cars on crest of a dike

7HR Wallingford

7HR Wallingford Chapter 4: Overtopping tools in perspective

Overview

- Revised empirical equations
- Empirical calculator
- PC-Overtopping
- EurOtop database
- EurOtop Artificial Neural Network
- Gaussian Process Emulator
- Numerical modelling
- Physical modelling

2HR Wallingford

Refined approaches to the formulae

- Mean value approach. Use formula as given with mean value of stochastic parameter(s) to predict or compare with test data. Model factor m is given with $\sigma(m)$. This is the *probabilistic design* approach in EurOtop (2007);
- Design or safety assessment approach. This is an easy semiprobabilistic approach (partial safety factor); as the mean value approach above, but including uncertainty of the prediction: m = $\mu(m) + \sigma(m)$. This was the *deterministic design* approach in EurOtop (2007).
- Probabilistic approach. Consider the stochastic parameter(s) with their given standard deviation and assuming a normal or log-normal distribution.
- The 5%-exceedance lines, or 90%-confidence band, can be calculated by using $\mu(m) \pm 1.64\sigma(m)$ for the stochastic parameter(s).

EurOtop 2 – Calculation Tool Calculation Tool to Empirical Methods calculate overtopping discharge using empirical formulae

- To be extended and updated, but little change otherwise

Empirical calculator

PC-Overtopping

- Online prediction tool that was developed for dike type structures
- It can account for different roughness / permeability along a structure an advancement of the empirical calculator which can only resolve for idealised structure geometries with a single roughness
- NB. This tool will continue to use the original formulae of EurOtop (2007) and not be updated for EurOtop (2016)
- Output remains fairly close to the new prediction tools for cases where; Rc / Hm0 > 0.5m

HR Wallingford

PC-Overtopping

 Image: Note of the set of the se

HR Wallingford

Numerical modelling

No existing numerical model is capable of including all of these processes

 Require 500 - 1000 waves to be statistically reliable which is computationally demanding

New EurOtop database

- Builds on the CLASH database ~10,000 tests, now >17,000 tests
- Covers a wide range of structures; dikes, rubble mound breakwaters, berm breakwaters, caissons and combinations of these structures
- Reliability (RF) and complexity factor (CF) assigned; 1 = most reliable, 4 = least and not used
- The new database includes wave transmission (Kt) and wave reflection (Kr) datasets as well as overtopping (q)
- The database can be searched to find corresponding examples to the one being examined
- Will be available on the webpage <u>www.overtopping-manual.com</u>

New EurOtop database

 42 parameters per dataset entry covering hydraulic, structural, geometry, and general features to fully describe each entry in more detail than the CLASH database

16/05/2017

© HR Walingford 2014

7HR Wallingford

EurOtop Artificial Neural Network

Advantages:

- It works for wider ranges of structure configuration - an advancement on PC-Overtopping and Empirical calculator
- It is easy to calculate trends instead of just one calculation with one answer

Disadvantages:

 How well your structure fits the database is not shown and does not yield the dataset of closest comparison

Bayonet Gaussian Process Emulator

H OPE

- Another new online prediction tool under development which will also go live on website
- Developed by HR Wallingford and Environment Agency
- Trained on the same EurOtop database
- Not a neural network. Uses Gaussian processes to take median path rather than line of best fit Advantages
- If the case being examined matches an entry within the database it will yield the original result
- Gives a score based on closeness to known data and validity of the input
- Prevents you from calculating outside the known dataset - green, orange, red

2HR Wallingford

Physical modelling

 The number of parameters and complex wave-structure interaction make physical models the most reliable tool for measuring overtopping

Physical modelling Mean discharge & individual overtopping volumes can be measured - important for defining tolerable discharge Frequently occurring and extreme storm events can be modelled over the entire storm duration - statistically more reliable

From slope to steeply battered

$$\frac{q}{\sqrt{g \cdot H_{m0}^{2}}} = 0.047 \cdot \exp\left[-\left(2.35 \frac{R_{c}}{H_{m0}}\right)^{13}\right]$$
Influencing foreshore, non-impulsive:

$$\frac{q}{\sqrt{g \cdot H_{m0}^{2}}} = 0.05 \exp\left[\frac{Q}{Q} - 2.78 \frac{R_{c}}{H_{m0}} \frac{Q}{Q}\right]$$
Influencing foreshore, impulsive:

$$\frac{q}{\sqrt{g H_{m0}^{2}}} = 0.011 \left(\frac{H_{m0}}{H_{s_{m-1,0}}}\right)^{05} \exp\left(-2.2 \frac{R_{c}}{H_{m0}}\right)$$
valid for $0 < R_{c}/H_{m0} < 1.35$

$$\frac{q}{\sqrt{g H_{m0}^{3}}} = 0.0014 \left(\frac{H_{m0}}{H_{s_{m-1,0}}}\right)^{05} \left(\frac{R_{c}}{H_{m0}}\right)^{3}$$
valid for $R_{c}/H_{m0} \ge 1.35$

www.overtopping-manual.com

Supported by:

- Calculation Tool to calculate overtopping discharge using empirical formulae
- Neural Network
- PC-Overtopping
- Videos of overtopping processes

Note: Some problems are complicated – we prefer to give you guidance where we can, but there will be some aspects left to the user!

© HR Walingford 201

EurOtop 2 – Acknowledgements

This activity has partial funding, but relies strongly on good-will and informal support. The EurOtop 2 Team particularly thanks:

- Netherlands Rijkswaterstaat
- UK Environment Agency
- Ghent University; University of Edinburgh; Steering Group:

· Bas Hofland, Deltares,

- · Hans van der Sande, Dutch Water Boards,
- · Leo Franco, Modimar & University of Rome 3,
- · Hadewych Verhaeghe, Flanders Community,
- · Corrado Altomare, Flanders Hydraulics,

